PRESS RELEASE

Phoenix QT+

Certara, a provider of software and scientific consulting, has announced the launch of its Phoenix QT+ cardiac safety assessment tool. The product provides data processing, statistical, and modelling capabilities to determine whether a drug candidate prolongs cardiac repolarisation.

It is important to know whether a drug candidate causes disruption of the electrical potential in the left ventricular cardiac cells and QT prolongation because they can lead to potentially-fatal arrhythmias.

For that reason, systemic new drug candidates are required to undergo a Thorough QT (TQT) study under the ICH E14 Guidelines (ICH, 2005). The TQT study is a clinical pharmacology study designed to demonstrate that a drug does not prolong the QT/QTc interval in healthy volunteers.

Phoenix QT+ performs a quick but comprehensive analysis of electrocardiogram (ECG) interval data collected in TQT studies and sub-studies in other clinical trials to determine whether that is the case. It also supports concentration-QTc modeling of pooled data collected in early phase 1 studies. Results are displayed automatically in worksheets and graphics.

Phoenix QT+ is Certara’s second cardiac safety tool; it introduced the Cardiac Safety Simulator (CSS), an in-silico model of human ventricular heart cells, in mid-2013. When Certara’s CSS is integrated with its Simcyp Population-based Simulator, it permits the in-vitro to in-vivo extrapolation of pharmacokinetic and pharmacodynamic data to predict the likelihood that a drug candidate will exhibit cardiac toxicity.

Company: 
Feature

For functionality and security for externalised research, software providers have turned to the cloud, writes Sophia Ktori

Feature

Robert Roe looks at the latest simulation techniques used in the design of industrial and commercial vehicles

Feature

Robert Roe investigates the growth in cloud technology which is being driven by scientific, engineering and HPC workflows through application specific hardware

Feature

Robert Roe learns that the NASA advanced supercomputing division (NAS) is optimising energy efficiency and water usage to maximise the facility’s potential to deliver computing services to its user community

Feature

Robert Roe investigates the use of technologies in HPC that could help shape the design of future supercomputers