Thanks for visiting Scientific Computing World.

You're trying to access an editorial feature that is only available to logged in, registered users of Scientific Computing World. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Opera v15

Share this on social media:

Cobham Technical Services has released v15 of its Opera electromagnetics simulator for design engineers, adding three-dimensional mechanical stress analysis. By capturing mechanical deformation in conjunction with electromagnetic and thermal modelling, the integrated software can greatly reduce design complexity and timescales.

Opera provides a complete design-simulate-analyse-optimise toolchain for electromagnetic applications. The software is renowned for its accuracy of simulation and speed of execution - allowing demanding simulations to be solved on standard office-grade PCs. It is available in a number of variants that include finite element analysis (FEA) for static and time-varying electromagnetic fields, and application-specific solvers for rotating electrical machines, superconducting magnets, charged particle beam devices, and magnetisation/demagnetisation processes. Advanced material models, such as lossy dielectric insulation and magnetic hysteresis, put Opera at the cutting edge of simulation capability. Opera's electromagnetic models may also be coupled with third-party system simulation tools available within Simulink.

The new three-dimensional stress analysis module solves for deformations within the elastic limit of the materials, and may be coupled with the electromagnetic solvers to provide a single-step solution to virtual prototyping. In addition to stress and strain produced by the application of mechanical loads and by electromagnetically induced forces, Opera's thermal analysis module may be used to co-simulate thermal expansion. The effects of gravity or rotationally induced forces can also be incorporated in design simulations.