Thanks for visiting Scientific Computing World.

You're trying to access an editorial feature that is only available to logged in, registered users of Scientific Computing World. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

IBM and Nvidia collaborate to expand open source machine learning tools

Share this on social media:

IBM has recently announced that it plans to incorporate the new RAPIDS open source software into its enterprise-grade data science platform for on-premises, hybrid, and multicloud environments.

‘IBM has a long collaboration with NVIDIA that has shown demonstrable performance increases leveraging IBM technology, like the IBM POWER9 processor, in combination with NVIDIA GPUs,’ said Bob Picciano, senior vice president of IBM Cognitive Systems. ‘We look to continue to aggressively push the performance boundaries of AI for our clients as we bring RAPIDS into the IBM portfolio.’

RAPIDS will help bring GPU acceleration capabilities to IBM offerings that take advantage of open source machine learning software including Apache Arrow, Pandas and scikit-learn. Immediate, wide ecosystem support for RAPIDS comes from key open-source contributors including Anaconda, BlazingDB, Graphistry, NERSC, PyData, INRIA, and Ursa Labs.

IBM is planning to bring RAPIDS to key areas across on-premises, public, hybrid, and multicloud environments, including:

  • PowerAI on IBM POWER9, to leverage RAPIDS to expand the options available to data scientists with new open source machine learning and analytics libraries. Accelerated workloads have been proven to get a direct benefit from the special engineering that Nvidia and IBM have done around POWER9, including integration of Nvidia NVLink and Nvidia Tesla Tensor Core GPUs. PowerAI is IBM's software layer that optimizes how today's data science and AI workloads run on heterogeneous computing systems, and our goal is for this improved performance trajectory for GPU accelerated workloads on POWER9 to continue with RAPIDS.
  • IBM Watson Studio and Watson Machine Learning, to take advantage of the power of NVIDIA GPUs so that data scientists and AI developers can build, deploy, and run faster models than CPU-only deployments for their AI applications in a multi-cloud environment with IBM Cloud Private for Data and IBM Cloud.
  • IBM Cloudto users who choose machines equipped with GPUs will be able to apply the accelerated machine learning and analytics libraries in RAPIDS for their cloud applications and tap the benefits of machine learning.

‘IBM and NVIDIA's close collaboration over the years has helped leading enterprises and organisations around the world tackle some of the world's largest problems,’ said Ian Buck, vice president and general manager of Accelerated Computing at Nvidia.

‘Now, with IBM taking advantage of RAPIDS open-source libraries announced today by Nvidia, GPU accelerated machine learning is coming to data scientists, helping them analyse big data for insights faster than ever possible before.’

Company: