Thanks for visiting Scientific Computing World.

You're trying to access an editorial feature that is only available to logged in, registered users of Scientific Computing World. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Google launches GPUs in the cloud

Share this on social media:

The Google Cloud Platform has received a performance boost as Google launch a public beta allowing users to deploy NVIDIA Tesla K80 GPUs.

GPUs can be particularly useful for highly parallel workloads and Google is targeting application areas such as machine learning in the hopes that more customers will begin using the cloud platform for compute-intensive workloads.

Google is supporting machine learning workloads through the use of popular machine learning and deep learning frameworks such as TensorFlow, Theano, Torch, MXNet, and Caffe, as well as NVIDIA’s popular CUDA software for building GPU-accelerated applications.

The new Google Cloud GPUs are tightly integrated with Google Cloud Machine Learning (Cloud ML), which aims to slash the time it takes to train machine learning models at scale using the TensorFlow framework.

Cloud ML is a fully-managed service that provides end-to-end training and prediction workflow with cloud computing tools such as Google Cloud DataflowGoogle BigQueryGoogle Cloud Storage and Google Cloud Datalab.

Google is also offering a CloudML Bootcamp to teach new users how to Supercharge performance using GPUs in the cloud More information and documentation are available on the Google Cloud website.

However, it is not just machine learning workflows that can benefit from GPU acceleration. The company also recommends that GPUs can accelerate many workflows including video and image transcoding, seismic analysis, molecular modelling, genomics, computational finance, simulations, high-performance data analysis, computational chemistry, finance, fluid dynamics, and visualisation.

Company: