Thanks for visiting Scientific Computing World.

You're trying to access an editorial feature that is only available to logged in, registered users of Scientific Computing World. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

University of Illinois researchers help discover dark galaxy

Share this on social media:

Researchers at the University of Illinois have uncovered the existence of a dwarf ‘dark galaxy’ nearly four billion light-years away from Earth. The discovery was made when a team of researchers, including astronomers at the University of Illinois, using the Blue Waters supercomputer at the National Center for Supercomputing Applications (NCSA), noticed subtle distortions in the image of a gravitational lens.

The discovery came as part of a campaign to test new high-resolution capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), an observatory in northern Chile run by an international partnership of science organisations.

According to a paper to be published in the Astrophysical Journal, detailed analysis of the new ALMA image uncovered signs of a hidden dwarf galaxy in the halo of the more nearby galaxy. Joaquin Vieira, a professor of astronomy and co-author on the paper: ‘We used the largest telescope on Earth, along with an effect of space-time predicted by Einstein (gravitational lensing), along with the largest National Science Foundation-funded supercomputer (Blue Waters), to take the most sensitive picture of dark matter ever.’

During the project, the researchers captured images of an Einstein ring, which was produced by a massive foreground galaxy bending the light emitted by another galaxy nearly 12 billion light-years away.

This phenomenon, called gravitational lensing, was predicted by Einstein’s theory of general relativity and it offers a powerful tool for studying galaxies that are otherwise too distant to observe. It also sheds light on the properties of the nearby lensing galaxy because of the way its gravity distorts and focuses light from the more distant galaxy.

Vieira explained that this technique is going to continue to grow in importance for astronomers: ‘We hope that with larger samples of similar objects discovered in the next few years, we’ll learn a lot more about the properties dark matter, like the mass of the dark matter particle.’

For their analysis, the researchers harnessed thousands of computers working in parallel for many weeks, including NCSA’s Blue Waters supercomputer, one of the most powerful supercomputers in the world, to search for subtle anomalies that had a consistent and measurable counterpart in each ‘band’ of radio data. Using this data, researchers were able to piece together an unprecedented understanding of the lensing galaxy’s halo, the diffuse and predominantly star-free region around the galaxy.

Vieira commented that researchers at Illinois had an ‘enormous’ footprint on the project as they brought together local observers, theorists, and supercomputing experts to work on the discovery. Other co-authors at Illinois included Neal Dalal, professor of astronomy; Athol Kemball, professor of astronomy and NCSA expert in interferometry and big data; and Di Wen, a graduate student in astronomy who ran the analysis code.

Researchers at Stanford University, the University of Arizona, McGill University, and other institutions were also involved with the research.

According to theoretical predictions, most galaxies should be brimming with similar dwarf galaxies and other companion objects. Detecting them, however, has proven challenging. Even in our own Milky Way, astronomers can identify only 40 or so of the thousands of satellite dwarfs that are predicted to be present.

‘This discrepancy between observed satellites and predicted abundances has been a major problem in cosmology for nearly two decades, even called a 'crisis' by some researchers,’ said Neal Dalal of the University of Illinois. ‘If these dwarf objects are dominated by dark matter, this could explain the discrepancy while offering new insights into the true nature of dark matter,’ he added.

This study suggests, however, that the majority of dwarf galaxies may simply not be seen because they’re mainly composed of invisible dark matter and emit little if any light. ‘Our current measurements agree with the predictions of cold dark matter,’ said team member Gilbert Holder of McGill University in Montreal, Canada. ‘In order to increase our confidence, we will need to look at many more lenses.’

‘This is an amazing demonstration of the power of ALMA,’ said Hezaveh. ‘We are now confident that ALMA can efficiently discover these dwarf galaxies. Our next step is to look for more of them and to have a census of their abundance to figure out if there is any possibility of a warm temperature for dark matter particles.’

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the US National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).