Structural engineering software reveals architecture of dragonfly wing

Engineers have used Oasys GSA software to analyse the dynamic structure and resolve vibration patterns in order to understand the structural behaviour, and seemingly random variations of quadrangular and polygonal patterns, of a dragonfly wing. First presented at ASME, the International Mechanical Engineering Congress in Colorado, the work by Maria Mingallon, senior structural engineer at Arup, and Sakthivel Ramaswamy, director at KRR Engineering, revealed an intriguing feature, dubbed the nodus.

Acting as both reinforcement and shock absorber to the wing, the nodus copes with combined torsion and bending stress concentrations at the junction of the rigid leading-edge and the more flexible sections of the wing. The researchers concluded that the concentration of stresses and bending moments must have imposed strong selection pressure and that the nodus has evolved to combine a stress-absorbing strip of soft cuticle with strong, three-dimensional cross bars across the entire spar between the costal margin and the leading edge.

Oasys GSA Software’s ability to predict and resolve vibration issues is more commonly used in the design of buildings where the trend to use modern lighter materials creates potential vibration issues which must be resolved at the design stage. It has also recently been applied to the analysis of blast damage to human skeleton in war zones in a prize-winning post-graduate project at Imperial College in the UK.

Twitter icon
Google icon icon
Digg icon
LinkedIn icon
Reddit icon
e-mail icon

For functionality and security for externalised research, software providers have turned to the cloud, writes Sophia Ktori


Robert Roe looks at the latest simulation techniques used in the design of industrial and commercial vehicles


Robert Roe investigates the growth in cloud technology which is being driven by scientific, engineering and HPC workflows through application specific hardware


Robert Roe learns that the NASA advanced supercomputing division (NAS) is optimising energy efficiency and water usage to maximise the facility’s potential to deliver computing services to its user community


Robert Roe investigates the use of technologies in HPC that could help shape the design of future supercomputers